Vanishing viscosity approximation to hyperbolic conservation laws

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing Viscosity Approximation to Hyperbolic Conservation Laws

We study high order convergence of vanishing viscosity approximation to scalar hyperbolic conservation laws in one space dimension. We prove that, under suitable assumptions, in the region where the solution is smooth, the viscous solution admits an expansion in powers of the viscosity parameter ε. This allows an extrapolation procedure that yields high order approximation to the non-viscous li...

متن کامل

On vanishing viscosity approximation of conservation laws with discontinuous flux

This note is devoted to a characterization of the vanishing viscosity limit for multi-dimensional conservation laws of the form ut + div f(x, u) = 0, u|t=0 = u0 in the domain R × R . The flux f = f(x, u) is assumed locally Lipschitz continuous in the unknown u and piecewise constant in the space variable x; the discontinuities of f(·, u) are contained in the union of a locally finite number of ...

متن کامل

Adaptive Spectral Viscosity for Hyperbolic Conservation Laws

Spectral approximations to nonlinear hyperbolic conservation laws require dissipative regularization for stability. The dissipative mechanism must on the other hand be small enough, in order to retain the spectral accuracy in regions where the solution is smooth. We introduce a new form of viscous regularization which is activated only in the local neighborhood of shock discontinuities. The bas...

متن کامل

An Alternating Evolution Approximation to Systems of Hyperbolic Conservation Laws

In this paper we present an alternating evolution (AE) approximation

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2008

ISSN: 0022-0396

DOI: 10.1016/j.jde.2008.01.005